Infrared thermometry study of nanofluid pool boiling phenomena
نویسندگان
چکیده
Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%). In addition to macroscopic parameters like the average heat transfer coefficient and critical heat flux [CHF] value, more fundamental parameters such as the bubble departure diameter and frequency, growth and wait times, and nucleation site density [NSD] were directly measured for a thin, resistively heated, indium-tin-oxide surface deposited onto a sapphire substrate. Consistent with other nanofluid studies, the nanoparticles caused deterioration in the nucleate boiling heat transfer (by as much as 50%) and an increase in the CHF (by as much as 100%). The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat. Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces. Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement.
منابع مشابه
Experimental Study of Transient Pool Boiling Heat Transfer under Exponential Power Excursion on Plate - Type Heater
Conduction and single-phase convective heat transfer are well understood phenomena: analytical models [1] and empirical correlations [2] allow capturing the thermal behavior of plate-type fuels or heaters in contact with a single-phase coolant. On the other hand, transient boiling heat transfer is a scarcely studied and much less understood phenomenon. Although, earlier studies have shown that ...
متن کاملStudy of bubble growth in water pool boiling through synchronized, infrared thermometry and high-speed video
High-speed video and infrared thermometry were used to obtain timeand space-resolved information on bubble nucleation and heat transfer in pool boiling of water. The bubble departure diameter and frequency, growth and wait times, and nucleation site density were directly measured for a thin, electrically-heated, indium-tin-oxide surface, laid on a sapphire substrate. These data are very valuabl...
متن کاملFLOW VISUALIZATION AND STUDY OF CRITICAL HEAT FLUX ENHANCEMENT IN POOL BOILING WITH Al2O3-WATER NANOFLUIDS
Pool boiling heat transfer characteristics of Al2O3 -water nanofluids is studied experimentally using a NiCr test wire of 36 standard wire guage diameter. The experimental work mainly concentrated on (1) change of critical heat flux with different volume concentrations of nanofluid and (2) flow visualization of pool boiling using a fixed concentration of nanofluid at different heat flux values....
متن کاملSynchronized High-Speed Video, Infrared Thermometry, and Particle Image Velocimetry Data for Validation of Interface-Tracking Simulations of Nucleate Boiling
Nucleation, growth and detachment of steam bubbles during nucleate boiling of a water pool at atmospheric pressure is experimentally investigated using a combination of synchronized high-speed video (HSV), infrared (IR) thermography and particle image velocimetry (PIV). The heater is a thin (<1 m), horizontal (20×10 mm 2 ), resistively-heated, indium-tin-oxide (ITO) film, vacuum-deposited on a...
متن کاملA review on boiling heat transfer enhancement with nanofluids
There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat tran...
متن کامل